A Technical Evaluation Of The **Performance Of Classical Artificial** intelligence (AI) And Machine **Learning Methods Based On** Computational Intelligence (CI) i.e **Supervised Learning And Ensemble** In Intrusion Detection Systems.

#### Presentation Outline

- \* Abstract
- \* Introduction
- \* Types of Intrusion Detection Systems
- Classical Artificial Intelligence Methods
- \* Machine Learning Methods
- \* Experiments and Results
- \* Conclusion

#### Abstract

- \* This research is a technical evaluation on some of the Artificial Neural Networks and Machine Learning algorithms when used to detect anomalies in intrusion detection.
- \* Experiments were done using a few algorithms and the NSL-KDD dataset.

#### Introduction

- \* Intrusion Detection is regarded as the second line of defense.
- \* It is usually done through the detection of unusual traffic which is eventually considered to be an anomaly and several other methods.
- \* The major classifications of intrusion detection systems are active and passive IDS.

## Introduction(Continued).....

- \* An active Intrusion Detection Systems (IDS) is sometimes referred to as an Intrusion Detection and Prevention System (IDPS).
- \* It is designed in such a way that malicious traffic will be dropped without the intervention of an operator.
- \* Intrusion Detection and Prevention System (IDPS) has the benefit of providing real-time remedial action in response to an attack.

## Introduction(Continued).....

- \* A passive IDS is a system that is configured to only monitor and analyze network traffic activity and alert an operator to potential vulnerabilities and attacks.
- \* A passive IDS will not perform any protective or corrective action on its own.

### Types of Intrusion Detection Systems

- \* There are five main types of Intrusion Detection Systems:
  - Host Based
  - Network Based
  - Stack Based
  - Signature Based
  - Anomaly Based

# Types of Intrusion Detection Systems(Continued....)

- \* **Host Based** -Intrusion Detection System is installed on a host in the network.
- \* **Network Based** -Network IDSs (NIDS) are placed in key areas of network infrastructure and monitors the traffic as it flows to other host.

# Types of Intrusion Detection Systems(Continued....)

- \* Stack Based IDS -Stack based IDS is latest technology, which works by integrating closely with the TCP/IP stack, allowing packets to be watched as they traverse their way up the OSI layers.
- \* **Signature Based** -Signature-Based IDS use a rule set to identify intrusions by watching for patterns of events specific to known and documented attacks.

# Types of Intrusion Detection Systems(Continued....)

\* Anomaly Based IDS -Anomaly-Based IDS examines ongoing traffic, activity, transactions and behavior in order to identify intrusions by detecting anomalies.

## Supervised Learning

- \* The algorithms consist of a target / outcome variable (or dependent variable) which is to be predicted from a given set of predictors (independent variables). Eg:
- \* Artificial Neural Networks
- Ensemble Methods

### Classification Model



## Classical Artificial Intelligence Methods

- \* Multi Layer Perceptron
- \* CHIRP
- \* Voted Perceptron

## Multi Layer Perceptron

- \* Multi Layer perceptron (MLP) is a feedforward neural network with one or more layers between input and output layer.
- \* Feedforward means that data flows in one direction from input to output layer (forward).
- \* This type of network is trained with the backpropagation learning algorithm.
- \* MLPs are widely used for pattern classification, recognition, prediction and approximation.
- \* Multi Layer Perceptron can solve problems which are not linearly separable.

## Chirp

\* This classifier, called CHIRP, is an iterative sequence of three stages (projecting, binning, and covering) that are designed to deal with the curse of dimensionality, computational complexity, and nonlinear separability.

## Machine Learning Algorithms

- \* Random Forest
- \* Real Adaboost
- \* Bagging
- \* SVM
- \* Naïve Bayes

#### Random Forest

- \* Random Forest is a trademark term for an ensemble of decision trees.
- \* In Random Forest, we've collection of decision trees (so known as "Forest").
- \* To classify a new object based on attributes, each tree gives a classification and we say the tree "votes" for that class.
- \* The forest chooses the classification having the most votes (over all the trees in the forest).

### Naïve Bayes

- \* It is a classification technique based on Bayes' Theorem with an assumption of independence between predictors.
- \* In simple terms, a Naive Bayes classifier assumes that the presence of a particular feature in a class is unrelated to the presence of any other feature.
- \* For example, a fruit may be considered to be an apple if it is red, round, and about 3 inches in diameter.
- \* Even if these features depend on each other or upon the existence of the other features, a Naive Bayes classifier would consider all of these properties to independently contribute to the probability that this fruit is an apple.

#### Real AdaBoost

- \* AdaBoost is a popular boosting technique which helps you combine multiple "weak classifiers" into a single "strong classifier".
- \* A weak classifier is simply a classifier that performs poorly, but performs better than random guessing.
- \* A simple example might be classifying a person as male or female based on their height.
- \* You could say anyone over 5' 9" is a male and anyone under that is a female.
- \* You'll misclassify a lot of people that way, but your accuracy will still be greater than 50%.

#### SVM

\* In this algorithm, we plot each data item as a point in n-dimensional space (where n is number of features you have) with the value of each feature being the value of a particular coordinate.





### **Experiments and Results**

- \* All experiments were done using WEKA.
- \* The training dataset used was NSL-KDD dataset which contains **42829** instances with several types of attacks which include:
- \* DOS, Probe, R2L, U2R etc.
- \* The testing dataset consisted of **22544** instances

| Algorithm          | Build Time           | Test Time            | True Positives |
|--------------------|----------------------|----------------------|----------------|
| MLP                | 7695.91s app 2.1 hrs | 1.31                 | 77.71          |
| Chirp              | 429.72s app 7.15mins | 0.49s                | 76.8808        |
| Voted Perceptron   | 19 <b>.</b> 43s      | 54.115               | 41.1595        |
| Random Forest      | 80.39s               | 0.83s                | 80.4516        |
| Real Adaboost      | 8.71s                | 0.14s                | 80.4205        |
| Bagging            | 41.69s               | 0.15s                | 82.6295        |
| SVM                | 21873.47s app 6hrs   | 396.58s app<br>6mins | 72.3518        |
| Naïve Bayes        | 0.79s                | 0.96s                | 76.1178        |
| Ensemble Selection | 106.33s app 1.7mins  | 4.02                 | 84.3018        |

#### Conclusion

- \* The results of the experiments showed us that Ensemble Selection is a much better option compared to the other algorithms.
- \* This is because it had more true positives and had a higher precision and recall value.
- \* The Voted Perceptron yielded the worst results meaning that it might not be the best algorithm to use when it comes to intrusion detection.

#### **Future Work**

- \* We would like to analyse the performance of Immune algorithms.
- \* Use the winning Algorithm to design a prototype.

#### The End

## \*Thank you!