

Responding to the demands of big data scientific instruments through the development of an international software defined exchange point (SDX)

Prof. Dr. Luis Fernandez Lopez lopez@ansp.br

The Phenomenon

- New scientific instruments are being developed in the southern hemisphere that will increase the need for large, real-time data transfers among scientists throughout the world:
 - The Large Synoptic Survey Telescope (LSST) being built in Chile
 - Will produce 6.4 GB images that must be transferred to the U.S. in 5 seconds
 - The Square Kilometer Array (SKA) in South Africa
 - Will transmit approximately 160Gbps of data from each radio dish to a central processor

SKA network requirements

- SKA uses four network types:
 - Science Data
 - Transport of thousands of Gigabits of data per second
 - High-throughput network transport
 - Sync and Timing
 - Requires low latency, high priority, and low bandwidth
 - Low bandwidth requirements
 - Non-science data
 - Carries 'live' observation critical data; testing, diagnostic and commissioning data;
 - All other monitor and control information
 - General purpose communications traffic (e.g. IP telephony)
 - High-throughput network transport
 - External Connections
 - Multiple 100G connections
 - High-throughput network transport

Limitations of traditional networks

- Traditional networks are based on destination MAC or IP addresses
 - Sub-optimal resource utilization
 - Forwarding based on other fields implies complex operation
- Some R&E networks can accommodate big data requirements:
 - Multiple paths with multiple 100G links
 - Dynamic provisioning, Bandwidth reservation, Network programmability, etc.
- But R&E networks are interconnected through Academic Exchange Points:
 - Almost no support for programmability
 - Manual provisioning of circuits and services (QoS profiles, for instance)
 - Data-intensive end-to-end applications may require all networks in the path to support QoS and Programmability
 - Including the Academic Exchange Points
- Software Defined Exchanges offer a potential solution

SDX

- A Software Defined eXchange (SDX) introduces Software Defined Networking (SDN) technologies into Academic Exchange Points to optimize
 - Resource sharing and allocation
 - Inter-domain R&E network programmability
 - End-to-End QoS coordination and enforcement
- Policies based on packet header field:
 - Match TCP or UDP source and destination ports
 - Match source and destination IP address or
 - Match source and destination MAC addresses
- Policies based on external data:
 - Collect information from other systems, such as
 - network monitoring systems, user databases, DNS or NTP server
 - Match parameters, such as network latency, bandwidth, user name, domain name, date and time

SDX Applications

- To augment BGP policies in an Academic Exchange Point:
 - Application-specific peering
 - Inbound traffic engineering
 - Wide-area load balancing
 - Redirection through middle boxes
- Data Domain:
 - Data-on-demand
 - Data preprocessing
 - High-quality media transmission over long-distance networks.

AtlanticWave-SDX Project

- NSF project to build a distributed international SDX controller
- Led by FIU and Georgia Tech universities
- Collaborating partners ANSP and RNP in Brazil
- Initially, three SDX sites (São Paulo, Miami, and Atlanta)
 - Fortaleza a potential future site
- Thousands of KM of fiber between each location
- Split controller design
 - Central controller for interacting with users
 - Local controllers at each location

APIs for Different Audiences

}

Administrators •

```
Domain scientists
```

```
{"l2tnnel":
"starttime":"2016-10-12T23:20:50",
"endtime": "2016-10-13T23:20:50",
"srcswitch": "atl-switch",
"dstswitch": "mia-switch",
"srcport":5,
"dstport":7,
"srcvlan":1492,
"dstvlan":1789,
"bandwidth":1
```

```
{"dtntunnel":
"quantity":"7TB",
"deadline": "2016-10-30T23:59:59",
"srcdtn": "gt-dtn",
"dstdtn":"fiu-dtn"
}
```

Web Interface

*

Topology

About Us

sdonovan

Request a Pipe

Users can request for a pipe based on their requirements and role

Network Engineers Scientists

Enter the start date: Enter the desired bandwidth: Enter the source VLAN: 2016-10-10 1 2387 Enter the start time: Enter the physical port number at source: Enter the destination VLAN: 00:00 1 5478 Enter the end date: Enter the physical port number at destination: Select source: 2016-10-17 2 Miami Enter the end time: Select destination: 23:59 Atlanta Preview Submit

Meet the Team

Conclusion

- SDX could be used to address users' requirements for compute, storage and networking resource sharing
- SDX goal is to provide inter-domain SDN capabilities in Academic Exchange Points
- SDX has the potential to provide end-to-end interdomain programmability and QoS
- With SDX, SKA and LSST can achieve their goals of
 - high bandwidth availability
 - low latency and high priority over existing R&E interconnected networks